POSS-Polyimide Nanocomposite Films: Simulated Hypervelocity Space Debris and Atomic Oxygen Effects

نویسندگان

  • N. Eliaz
  • R. VERKER
  • E. GROSSMAN
  • I. GOUZMAN
چکیده

The combined effect of hypervelocity space debris impact and atomic oxygen (AO) attack on the degradation of reinforced polyhedral oligomeric silsesquioxanes (POSS)-polyimide films was studied. A laser-driven flyer (LDF) system was used to accelerate aluminum flyers to impact velocities of up to 3 km s 1. The impacted films were exposed to an RF-plasma source, which was used to simulate the effect of AO in the low Earth orbit. Scanning electron microscopy (SEM) was used to characterize the fracture morphology. The extent of damage in POSS-polyimide impacted films was found to be much smaller compared to POSS-free films, insinuating on a toughening mechanism developed due to POSS incorporation. When exposed to air RF-plasma, the impacted POSS-free film revealed a synergistic effect associated with a large increase in the erosion rate while impacted POSS-containing samples showed improved erosion resistance. The increased erosion rate of the impacted POSS-free film is explained by formation of residual stresses that affect the oxidation mainly by increasing the diffusivity of oxygen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures

Low Earth orbital debris impacts on the external surfaces of satellites have increased dramatically in recent years. Polyimides are used as the outer layer of thermal control insulation blankets, covering most of the external spacecraft surfaces that are exposed to the space environment. A recently developed material, named polyhedral oligomeric silsesquioxane (POSS)-polyimide, shows significan...

متن کامل

Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen

Polyimides are used as the outer layer of thermal control insulation blankets covering most of the external spacecraft surfaces that are exposed to space environment. The combined effect of ground simulated hypervelocity space debris impacts and atomic oxygen (AO) on the fracture of polyimide films was studied. A laser-driven flyer system was used to accelerate aluminum flyers to impact velocit...

متن کامل

Effect of the POSS–Polyimide nanostructure on its mechanical and electrical properties

Nanocomposite films consisted of Polyhedral Oligomeric Silsesquioxane (POSS) filler in a Polyimide (PI) matrix were prepared. The effect of the nanocomposites’ structure on its mechanical and electrical properties was evaluated with respect to survival in the low Earth orbit (LEO) environment. The POSS–PI structure consists of POSS nano-aggregates formed in the bulk and on the surface. The aggr...

متن کامل

TriSilanolPhenyl POSS–polyimide nanocomposites: Structure–properties relationship

Polyhedral Oligomeric Silsesquioxane (POSS)–polyimide (PI) thin films were synthesized from pre-mixed solution of oxydianiline–pyromellitic dianhydryde (ODA–PMDA) and TriSilanolPhenyl (TSP) POSS. POSS– PI polymerization reaction kinetics was studied using Fourier Transform Infrared (FTIR) spectroscopy. The POSS–PI films were then investigated by tensile tests, followed by surface morphology exa...

متن کامل

Atomic oxygen effects on POSS polyimides in low earth orbit.

Kapton polyimde is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen in low Earth orbit (LEO), Kapton is severely eroded. An effective approach to prevent this erosion is to incorporate polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerizing POSS monomers with the polyimide precursor. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006